Journal of Applied Materials Engineering

(ISSN: 2658-1744) Open Access Journal
Rss Feed:
Journal of Applied Materials Engineering (JAME) is no longer published on JAMS (MDPI publishing platform) as of 15.10.2021. Articles remain hosted at jame.jams.pub by courtesy of JAMS and upon agreement with the journal owner until the publications are transferred to a new website.
image missing

Table of Contents

J. Appl. Mater. Eng., Volume 60, Issue 2 (October 2020)
select all articles
Export citation of selected articles as:
J. Appl. Mater. Eng. 2021, 60(2); doi: 10.35995/jame60020007
Received: 19 Jan 2021 / Revised: 16 Feb 2021 / Accepted: 18 Feb 2021 / Published: 23 Feb 2021
One of the research directions of this study is to determine the possibility of making precise, thin-walled castings from selected iron alloys. The scope of research work is aimed at determining the applicability of the casting process of selected iron alloys with the
[...] Read more.
One of the research directions of this study is to determine the possibility of making precise, thin-walled castings from selected iron alloys. The scope of research work is aimed at determining the applicability of the casting process of selected iron alloys with the technology of wax pattern, for making precise castings with a wall thickness of less than 3 mm. The article presents the results of tests carried out for experimental castings with the shape of steps, characterized by different wall thicknesses: 1 mm, 5 mm, 10 mm, 25 mm. The castings were made of LH14, Gs42crMo4, L35H7MP2, LH26N9, 316L cast steel, and a new alloy marked “0”. The metal was smelted in an induction furnace with a capacity of 150 kg. The technology of ceramic shell mould used in the plant was used to make the experimental castings. Ceramic shell moulds were heated in a chamber furnace at a fixed temperature. The time of annealing the ceramic mould was constant in a ceramic form. The following parameters were variable during the tests: iron alloy, pouring temperature, and annealing temperature of the ceramic shell mould. Full article
J. Appl. Mater. Eng. 2021, 60(2); doi: 10.35995/jame60020006
Received: 3 Jul 2020 / Revised: 4 Feb 2021 / Accepted: 16 Feb 2021 / Published: 19 Feb 2021
The aim of this work was to study the impact of various fabrication methods used to prepare high entropy alloys based on the AlFeMnNbNiTi system. Chemical composition was customized to ensure a solid solution structure with precipitation of the Laves phase. The three
[...] Read more.
The aim of this work was to study the impact of various fabrication methods used to prepare high entropy alloys based on the AlFeMnNbNiTi system. Chemical composition was customized to ensure a solid solution structure with precipitation of the Laves phase. The three manufactured alloys were prepared by melting, but with the use of various input materials and different furnaces in protective atmospheres. After the melting process, heat treatment was carried out. Structures of obtained materials were analyzed by means of a Scanning Electron Microscope (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS) mapping. Mechanical properties were represented by Vickers hardness. In this paper, impact of the use of low purity input materials is shown, as well as differences in structure resulting from the utilization of different melting furnaces. Full article
J. Appl. Mater. Eng. 2021, 60(2); doi: 10.35995/jame60020005
Received: 26 Nov 2020 / Revised: 8 Jan 2021 / Accepted: 25 Jan 2021 / Published: 28 Jan 2021
This paper presents the technology of powder sintering by the spark plasma sintering method, also known as the field assisted sintering technique. The mechanisms, compared to other sintering techniques, advantages of this system, applied modifications and the history of the development of this
[...] Read more.
This paper presents the technology of powder sintering by the spark plasma sintering method, also known as the field assisted sintering technique. The mechanisms, compared to other sintering techniques, advantages of this system, applied modifications and the history of the development of this technique are presented. Spark Plasma Sintering (SPS) uses uniaxial pressing and pulses of electric current. The direct flow of current through the sintered material allows high heating rates to be reached. This has a positive effect on material compaction and prevents the grain growth of sintered compact. The SPS mechanism is based on high-energy spark discharges. A low-voltage current pulse increases the kinetics of diffusion processes. The SPS temperature is up to 500 °C lower than the sintering temperature using conventional methods. The phenomena that occur during sintering with the Field Assisted Sintering Technology (FAST)/SPS method give great results for consolidating all types of materials, including those which are nonconductive. This method is used, among others, in relation to metals, alloys and ceramics, including advanced and ultra-high-temperature ceramics. Due to the good results and universality of this method, in recent years it has been developed and often used in research institutions, but also in industry. Full article
J. Appl. Mater. Eng. 2020, 60(2); doi: 10.35995/jame60020004
Received: 1 May 2020 / Revised: 5 Oct 2020 / Accepted: 15 Oct 2020 / Published: 28 Oct 2020
The characteristics of abrasive tools (the type of grinding wheel, granulation of the super hard grain, type of structure, hardness, and the type of binder) contain information on the type of supporting body materials used (e.g., dural, ceramic, steel). In this work, diamond
[...] Read more.
The characteristics of abrasive tools (the type of grinding wheel, granulation of the super hard grain, type of structure, hardness, and the type of binder) contain information on the type of supporting body materials used (e.g., dural, ceramic, steel). In this work, diamond wheels were obtained on ceramic supporting bodies, containing a sintered mixture of white alumina 99A granulation F320, green silicon carbide 99A granulation F320, and binder Ba23 bis, together with modifiers. The mechanical properties (hardness, bending strength) of ceramic supporting bodies were tested. The structure of the phase boundary of the ceramic supporting body–abrasive grinding tool was analyzed on a BEC (backscattered electron composition) image by using SEM (Scanning Electron Microscopy). It was found that the hardness of the supporting body was slightly lower (70–75 HRB) than the diamond wheels (76–81 HRB). The bending strength of the supporting bodies was high (85 ±2 MPa). The BEC image from the scanning microscope did not show a sharp transition between the ceramic supporting body and the grinding wheel. Preliminary operational tests showed significant improvement in grinding wheel efficiency in comparison to diamond tools with the same ceramic binder on a duralumin supporting body during machining of G30 sintered carbide bush. Full article

Journal Browser