
Journal of Applied Materials Engineering
(formerly Prace Instytutu Odlewnictwa)

Selected Properties of High Entropy Alloys Based on
the AlFeMnNbNiTi System

Konrad Chrzan 1,* , Kamil Cichocki 2 , Piotr Adamczyk 2 and Krzysztof Muszka 2

1 Łukasiewicz Research Network—Krakow Institute of Technology, ul. Zakopiańska 73, 30-418 Kraków, Poland
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Abstract The aim of this work was to study the impact of various fabrication methods used to prepare high
entropy alloys based on the AlFeMnNbNiTi system. Chemical composition was customized to ensure a solid
solution structure with precipitation of the Laves phase. The three manufactured alloys were prepared by melting,
but with the use of various input materials and different furnaces in protective atmospheres. After the melting
process, heat treatment was carried out. Structures of obtained materials were analyzed by means of a Scanning
Electron Microscope (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS) mapping. Mechanical properties
were represented by Vickers hardness. In this paper, impact of the use of low purity input materials is shown, as
well as differences in structure resulting from the utilization of different melting furnaces.
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1. Introduction

High entropy alloys (HEAs) are a new group of materials which consist of at least five elements. According to
one definition, all chemical components should be in similar concentrations. Another definition for high entropy
alloys suggests that the mixing entropy for the alloy needs to be higher than 1.5R (R—gas constant, 8.314 J/(mol*K).
Currently, these materials are subjected to intensive research because some of the alloys produced thus far have
shown unique properties. This is influenced by the following factors:

− severe lattice distortion effect affecting increase in internal stress (Guo and Liu 2011);
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− high entropy effect causing tendency to create solid solutions (Yeh 2013);
− sluggish diffusion effect—e.g., helps maintain supersaturated state or blocks grain growth (Tong et al. 2005);
− cocktail effect consisting of influence of every chemical element of the alloy on its properties (Senkov et al. 2011).

On the contrary to earlier claims about too complicated, multiphase structures of complex materials, well
designed HEA alloys, even though they consist of many elements, can have single or dual phase solid solution
structures such as FCC, BCC or HCP, which are in most metal alloys. Some HEAs exhibit unique properties.
One example includes materials based on the Co1.5CrFeNi1.5Ti0.5 (Yeh et al. 2014) system, which exhibits excellent
high temperature properties and is considered as a competitive materials for nickel based alloys. Preparing
elements made of refractory high entropy alloys using special foundering methods, such as casting into multilayer
molds with ceramic shells, has an influence on the material behavior under high temperatures, broadening this
application (Rakoczy et al. 2019; Grudzień-Rakoczy et al. 2020). Another example is high entropy steels based on the
Fe–Mn–Al–Si–C system having excellent mechanical properties in low temperatures (below 0 ◦C) (Raabe et al. 2015).

High entropy alloys due to their complex chemical compositions are prone to segregation (Zhang et al. 2014).
In the case of manufacturing by conventional casting methods, it is recommended to remelt this type of alloy
several times (Wang et al. 2009). This can decrease the inhomogeneity of ingot. To further increase the degree
of homogeneity, in most cases HEA alloys are heat-treated. Homogenizing annealing is usually carried out at
temperatures near to the melting temperature for relatively long time (from few hours to many days). This allows
one to reach an alloy state near to the thermodynamic equilibrium state. Another important factor in manufacturing
by casting and heat treatments is the protective atmosphere used in processes (Shun et al. 2010; Lin et al. 2010;
Ren et al. 2012). Mostly, these treatments use a vacuum, which protects from oxidation and helps in removal of
gasses from materials. Another atmosphere used for this (usually used in heat treatment) is an inert gas atmosphere,
such as nitrogen or argon, which protect from reactions between alloy and atmosphere.

Except for conventional manufacturing methods, special methods such as BST—Bridgeman Solidification
Casting (Qiao et al. 2008), laser cladding (Zhang et al. 2011), and mechanical alloying (Varalakshmi et al. 2008) can be
used for production of HEAs. However, considering production of HEA alloys in large amounts, one should focus
on adaptation of existing conventional methods and production lines to enable manufacturing of these materials.

Therefore, the current work is focused on the effect of the development strategy on mechanical behavior
(hardness of the alloy) and the effect of additives on the microstructures of the HEA alloys.

2. Materials and Methods

2.1. Ingots Preparation

In total, three ingots were produced—one in a vacuum induction furnace (type VIM Lab 20-50) and two others
in an electric arc furnace (Bühler AM 200) according to the data presented in Table 1. The vacuum was around
10−5–10−6 bar, and the arc furnace used high purity argon. In comparison, developed ingots showed different
macrostructures, and the ingots fabricated by the vacuum induction process were porous (with high diameters of
individual pores) and visible without any equipment. In this process, the alloy was melted in vacuum and cast
to a ceramic crucible without unsealing of the furnace. On the other hand, the arc melted alloys developed fine
structures with no visible external porosity. In this case, input materials were put into a copper crucible, where
after the melting process, the alloy solidifies, forming the shape of the crucible. It is important to note that Alloy 1
was fabricated using a low purity ferroalloy; however, for Alloy 2, high purity elements were used. Alloy 3 was
fabricated using ferromanganese (with a low addition of Si and C) as one input element and the other elements
were pure.
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Table 1. Methods of preparation each of alloys

Signature Type of Input Materials Type of Protective Atmosphere Melting Furnace

Alloy 1 Ferroalloys Vacuum Induction furnace
Alloy 2 High purity metals Argon Arc furnace
Alloy 3 Ferroalloys Argon Arc furnace

Ingot produced in induction furnace weighed approximately 7 kg and had the shape of a truncated cone with
a height of 90 mm and diameter from 80 mm on foot to 86 mm on spur. After melting in the arc electric furnace, the
product was cuboid with a cross section of 10 × 15 mm, a length of 80 mm, and a weight of approximately 200 g.

The ingot produced in the induction furnace had some differences in color, and was visible without optic
instruments (foot of ingot had another color than rest of the material).

Further, the alloys were heat-treated by homogenizing annealing in protective atmosphere (Ar) for 6 h at
900 ◦C. The ingots were cooled down together with a furnace by switching off the mains. Cooled ingots were cut
into smaller pieces in order to prepare the samples to evaluate the hardness and microstructure using a Vickers
machine and optical microscope (OM), Scanning electron Microscope (SEM) equipped with Energy Dispersive
X-ray spectrometer (EDS) for chemical composition evaluation, and finally EDS X-ray mappings were carried out
to observe concentration of elements across the fabricated alloys. Finally, hardness of the prepared samples was
characterized using a standard Vickers machine with a load of 5 kg. Microstructural images and EDS maps were
made using an FEI Nova NanoSEM 450 scanning microscope.

Specimens were cut and ground and polished using SiC papers (grit 800, 1000, 1200) and polishing clothes
with diamond paste suspensions (9, 6, 3, and 1 µm) for 5 min with 150 rotations per minute using an applied force
of 150 N. At the last stage, polishing was carried out with an OP-S 0.04 µm for 1 min. The prepared surface was
etched in 5% natal solution. On every alloy, 4 measures were conducted and values of HV5. Hardness tests was
carried out on a Tukon 2500 hardness tester.

2.2. Chemical Composition of Alloys

Chemical composition tests results using mass spectrometry are presented in Table 2. Results shows that even small
additions of ferroalloy introduced many admixtures. Application of ferroalloys only also caused introduction of
many additional elements.

Table 2. Chemical composition of the ingots (wt.%)

Chemical Element Alloy 1 Alloy 2 Alloy 3

Mn 34.60% 40.30% 39.50%
Ni 28.50% 28.70% 23.90%
Fe 17.50% 18.90% 12.40%
Nb 10.20% 6.50% 6.60%
Ti 4.20% 2.70% 3.40%
Al 3.60% - 2.30%
Si 0.72% - 0.40%
Zr 0.21% - -
W 0.20% - -
C 0.03% - 1.40%
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2.3. Parameters of Fabricated Alloys

Types of HEA structures can be defined using simple calculation methods which include parameters such as
(Table 3):

− Entropy of configuration ∆S—should be higher than 12.471 J/(mol*K) for alloy to be considered as a high
entropy alloy;

− Mixing enthalpy ∆H—values between −20 a 5 kJ/mol−1 increase probability of creating a solid solution in
the structure;

− Ω parameter—parameters higher than 1.1 with the next parameter δ lower than 6.6 enhance chance of obtaining
solid solution structure;

− Valence Electron Concentration (VEC)—this parameter is helpful in determining type of solid solution structure
(VEC < 6.88-BCC; 6.88 < VEC < 8-BCC + FCC; VEC > 8-FCC).

Table 3. Calculated parameters for tested alloys

Alloy 1 Alloy 2 Alloy 3

∆S [J/(mol*K)] 13.09 11.64 12.90
∆H [kJ/mol−1] −15.50 −11.70 −12.30

Ω 1.5 1.30 1.40
∆ 7.12 6.13 6.33

VEC 7.548 7.38 6.33

From analyzing the obtained parameters for fabricated alloys, it can be said that Alloy 2 should be treated as a
multicomponent alloy with increased entropy of configuration. The rest of the parameters for this alloy suggest
the creation of solid solution in the structure. Other alloys have entropies of configuration above the limit value.
The parameters of Alloy 3 indicate that the material will have a BCC solid solution structure. In Alloy 1, the δ

parameter is higher than 6.6, so the probability of the creation of a solid solution is lower.

2.4. Hardness

Table 4 shows hardness measurements on the studied alloys.

Table 4. Hardness of each ingot

Vickers Hardness HV 5

Alloy 1 Alloy 2 Alloy 3

421 279 208
445 275 214
444 291 211
415 284 217

Average

431 282 212

Standard deviation

15.5 6.9 3.9
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Hardness measurements indicate highest hardness in Alloy 1. Two other alloys have significantly lower
hardness values, with the lowest being attributed to Alloy 3.

2.5. Microstructural Analysis

Figure 1 presents microstructures of studied alloys. Characteristics of the arrangement of phases are visible in
bright colors in Alloys 1 and 2.

Figure 1. Microstructures of described alloys. On the left side are pictures with magnifications 500×; on the other
side, with magnifications 1000×. Types of microscope are indicated above
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2.6. EDS Maps

Figure 2 shows maps of element distribution. For Alloy 1 and Alloy 3, distributions for admixtures which occur in
large amounts are additionally shown.

Figure 2. Cont
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Figure 2. Energy-Dispersive X-ray Spectroscopy (EDS) maps for sample prepared from manufactured alloys

EDS maps shows impact of admixtures on phase structure. The impact of silicon in Alloy 1 and Alloy 3 is
especially visible. Distribution maps suggest creation of compounds in the Fe-Nb-Si-Ti system.

3. Discussion

Within the scope of this paper, the studies performed have shown that it is possible to make high entropy alloys
which are melted and treated in inert gas atmospheres. In ingots, typical defects such as external porosity and basal
cavities were observed as well as differences in colors between different parts of materials (this phenomenon was
especially visible in Alloy 1, where the lower part of the ingot had bright-grey color and the rest was dark). This
shows that in complex materials it is very difficult to achieve homogeneity at a high level in all parts of the material
using standard melting processes. So, application of conventional casting methods to produce high entropy alloys
such as melting induction or electric arc furnace is possible, but repeating melting several times is recommended to
minimize differences in the ingot volume.

From analyzing results of hardness tests for manufactured alloys, big differences in measured hardness
between materials can be seen. Alloys 2 and 3 show how important it is to use input materials which have high
purities; in Alloy 3 ferromanganese introduced additional elements such as silicon and carbon into the alloy which
caused a decrease in hardness. The untypical behavior of Alloy 3 is interesting because although it has a lower
hardness than Alloy 2, it showed large resistance during cutting by circular saw with water cooling (cutting by this
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method was practically impossible). This could suggest the occurrence of the phenomenon phase transformation
under high pressure (as in Hadfield steel).

Microstructures show the occurrence of a large amount of phases in manufactured alloys. It can be further
noticed that in alloys made out from ferroalloys, the diversity of types of phases is the largest among produced
alloys. This confirms that additional elements, even in small amounts, could have led to formation of another types
of phases and increased the number of phases. The structures in the prepared alloys are complex. In the case of
Alloy 1 and Alloy 2 can be seen a strong tendency for segregation, which is visible in some images where clusters
were formed.

4. Conclusions

For all three chemical compositions, calculations were carried out to predict the possibility of creating solid solution
structures. Most of the calculated parameters for the presented alloys suggesting creation of solid solutions in the
structures. However, in all cases a large number of phases are visible. This shows that simple calculation methods
of designing high entropy alloys are not always useful. Currently, better results are obtained in HEA structure
predictions with thermodynamic analyses (Otto et al. 2013) or ab initio methods (Kresse and Hafner 1993; Huhn
and Widom 2013).

EDS images shows how strong the impact of an application of low purity ferroalloys is in producing high
entropy alloys. Although there is a small number of chemical elements that need to be introduced, they induce
substantial changes in phase composition. A very good example of this is in the comparison between Alloy 2 and
Alloy 3. In Alloy 2, where all of the input materials were pure, in places where is niobium, there is also iron, to a
lower degree, which suggests creation of a compound between these three elements. In turn, in Alloy 3, places
where there are clusters of niobium, there are also molecules of carbon, silicon and titanium. Therefore, it can be
inferred that in this case, other niobium phases were formed than the ones in Alloy 2. This is caused by using
ferromanganese as the input material when the rest of components were pure.

After application of heat treatment, which was conducting by annealing at 900 ◦C for 6 h under Ar atmosphere,
characteristic clusters of some phases in Alloy 1 and Alloy 2 were observed. This arrangement could have increased
fragility making cracking planes. In this case, heat treatment was relatively short (6 h). By extending annealing
times and increasing annealing temperature, the level of microstructural inhomogeneity can be reduced.

In summary, complex materials require special manufacturing methods, such as several remeltings of created
ingot connected with lasting annealing (He et al. 2017). In this work, ingots were remelted after being put into an
arc electric furnace only two times, which could have an impact on the homogeneity level of materials. For this
time, there is little information about producing this type of alloy by induction melting processes; therefore, it is
hard to say how big an impact using this method to structure Alloy 1 had. Furthermore, using input materials of
the appropriate purity is equally as important.
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Rakoczy, Ł, M. Grudzień-Rakoczy, and R. Cygan. 2019. The Influence of Shell Mold Composition on the As-cast
Macro- and Micro-structure of Thin-Walled IN713C Superalloy Castings. Journal of Materials Engineering and
Performance 28: 3974–85. [CrossRef]

Ren, B., Z. X. Liu, B. Cai, M. X. Wang, and L. Shi. 2012. Aging behavior of a CuCr2Fe2NiMn high-entropy alloy.
Materials & Design 33: 121–26. [CrossRef]

Senkov, O. N., G. B. Wilks, J. M. Scott, and D. B. Miracle. 2011. Mechanical properties of Nb25Mo25Ta25W25 and
V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19 (5): 698–706. [CrossRef]

Shun, T.-T., C. H. Hung, and C.-F. Lee. 2010. The effects of secondary elemental Mo or Ti addition in Al0.3CoCrFeNi
high-entropy alloy on age hardening at 700 ◦C. Journal of Alloys and Compounds 495 (1): 55–58. [CrossRef]

Tong, C. J., Y. L. Chen, S. K. Chen, J. W. Yeh, T. T. Shun, C. H. Tsau, S. J. Lin, and S. Y. Chang. 2005. Microstructure
characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and
Materials Transactions A 36: 881–93. [CrossRef]

Varalakshmi, S., M. Kamaraj, and B. S. Murty. 2008. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu
high entropy solid solution by mechanical alloying. Journal of Alloys and Compounds 460 (1–2): 253–57. [CrossRef]

Wang, F. J., Y. Zhang, and G. L. Chen. 2009. Cooling rate and size effect on the microstructure and mechanical
properties of AlCoCrFeNi high entropy alloy. Journal of Engineering Materials and Technology 131: 034501. [CrossRef]

Yeh, J. W. 2013. Alloy design strategies and future trends in high-entropy alloys. JOM 65: 1759–71. [CrossRef]

https://doi.org/10.35995/jame60020006
http://doi.org/10.3390/ma13102362
http://doi.org/10.1016/S1002-0071(12)60080-X
http://doi.org/10.1016/j.scriptamat.2016.08.008
http://doi.org/10.1007/s11837-013-0772-3
http://doi.org/10.1103/PhysRevB.47.558
http://www.ncbi.nlm.nih.gov/pubmed/10004490
http://doi.org/10.1016/j.intermet.2010.03.030
http://doi.org/10.1016/j.actamat.2013.01.042
http://doi.org/10.1002/adem.200800149
http://doi.org/10.1002/srin.201500133
http://doi.org/10.1007/s11665-019-04098-9
http://doi.org/10.1016/j.matdes.2011.07.005
http://doi.org/10.1016/j.intermet.2011.01.004
http://doi.org/10.1016/j.jallcom.2010.02.032
http://doi.org/10.1007/s11661-005-0283-0
http://doi.org/10.1016/j.jallcom.2007.05.104
http://doi.org/10.1115/1.3120387
http://doi.org/10.1007/s11837-013-0761-6


J. Appl. Mater. Eng. 2020, 60(2–3), 71–80; 10.35995/jame60020006 80

Yeh, A. C., Y. J. Chang, C. W. Tsai, Y. C. Wang, J. W. Yeh, and C. M. Kuo. 2014. On the solidification and phase
stability of a Co-Cr-Fe-Ni-Ti high-entropy alloy. Metallurgical and Materials Transactions A 45: 184–90. [CrossRef]

Zhang, H., Y. Z. He, Y. Pan, and H. S. Jiao. 2011. Microstructure and properties of 6FeCoNiCrAlTiSi high-entropy
alloy coating prepared by laser cladding. Applied Surface Science 257 (6): 2259–63. [CrossRef]

Zhang, Y., T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, and Z. P. Lu. 2014. Microstructures and properties
of high-entropy alloys. Progress in Materials Science 61: 1–93. [CrossRef]

https://doi.org/10.35995/jame60020006
http://doi.org/10.1007/s11661-013-2097-9
http://doi.org/10.1016/j.apsusc.2010.09.084
http://doi.org/10.1016/j.pmatsci.2013.10.001

	Introduction 
	Materials and Methods 
	Ingots Preparation 
	Chemical Composition of Alloys 
	Parameters of Fabricated Alloys 
	Hardness 
	Microstructural Analysis 
	EDS Maps 

	Discussion 
	Conclusions 

