
Journal of Applied Materials Engineering
(formerly Prace Instytutu Odlewnictwa)

Characteristics of the Evolution of Carbide
Morphology in the Haynes® 230® Alloy as a Result

of High Temperature Annealing
Małgorzata Warmuzek , Adelajda Polkowska * and Tomasz Paweł Dudziak

Łukasiewicz Research Network—Krakow Institute of Technology, Zakopiańska 73 Str., 30-418 Kraków, Poland;
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Abstract In this work, results of an investigation of the microstructure evolution in Haynes® 230® alloy are
presented. The morphological and chemical compositions of the chosen microstructure’s constituents, such
as the primary and secondary carbides, were analyzed based on tests in the temperature range 700–800 ◦C
for 1000–3000 h. The prediction of phase evolution within the microstructure was proposed based on the
analysis of mutual replacement of carbide-forming elements at the carbide/matrix interface. Based on the results,
some complementary markers were considered to describe Haynes® 230® microstructure evolution. Qualitative
markers, i.e., defined morphological features, were related to the shape and distribution of microstructure
constituents. The study also used quantitative markers related to the local chemical compositions of carbide
particles, determined as the ratio of the concentrations of carbide-forming elements Crc/Wc, Crc/CrM and
Wc/WM. Microstructure maps created on the basis of these complementary markers for the successive annealing
stages reflected the course of its morphological evolution.
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1. Introduction

Structural components made of nickel-based heat-resistant alloys such as Haynes® 230® are subjected to the effects
of high temperature and load simultaneously during exploitation. Therefore, inevitable degradation of mechanical
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properties as well corrosion degradation is observed as a result of changes in the microstructure state (HAYNES
International n.d.; Wu et al. 2008; Kim et al. 2014; Wang 2004; Yang et al. 2013; Dong et al. 2012; Fan et al. 2019).

The morphological model of the microstructure of Ni-based alloys can be described as grains of γ(Ni) solid
solution with second-phase particles, mainly of the geometrically close-packed (GCP) group (γ’) and other phases
such as the topologically close-packed (TCP) group, e.g., Laves, σ, and µ, and different carbides on grain boundaries
(Dong et al. 2012; Fan et al. 2019; Belan 2016; Seiser et al. 2011; Zheng et al. 2004). As the TCP group of phases
is harmful to alloy properties, their formation is usually eliminated at an early stage by selecting the chemical
composition of the alloy or optimizing the heat treatment parameters (Belan 2016). Carbides of transition metals,
such as Cr, W, and Mo, usually remain in the microstructure as phase constituents that control alloy properties,
including its creep resistance. In the subsequent stages of microstructure shaping such as solidification, cooling,
heat treatment, and exploitation, the primary carbides (e.g., MC-type) decompose while other type of carbides
form through precipitation from solid solution or through phase transformations (e.g., M23C6 or M6C) (Dong et al.
2012; Belan 2016; Lvov et al. 2004; Sun et al. 2016). It is a generally accepted opinion that large particles of primary
carbides can seriously degrade the mechanical properties of alloys. However, some positive material effects are also
attributed to the presence of carbides, directly by participation in the matrix dispersive hardening or indirectly by
stabilizing the grain boundaries against excessive shear (Dong et al. 2012; Fan et al. 2019; Belan 2016).

Recently, many procedures of identification and classifications of microstructure images based on the artificial
intelligence and machine learning concepts have been developed (DeCost and Holm 2015; Ma et al. 2020; Azimi et al.
2018; Chun et al. 2020). The published results are mainly focused on extracting the features of the microstructure
model. However, the microstructure of multiphase alloys consists of various constituents that differ in both
morphology and chemical composition. Thus, to extract useful data on the microstructure state from its microscope
images, additional local analyses of the chemical composition or crystal structure in chosen microregions should be
carried out.

In this work, the main aim of the research will be to describe the morphology of carbide particles with two local
features, such as shape, recognized by visual analysis and chemical composition, estimated by X-ray microanalysis.
The set of the morphological patterns for carbide particles visible on the microstructure image will be defined in
the natural language, based on the published knowledge on Ni-based alloys. As a second local feature, the local
chemical compositions of carbide particles will be used. In order to avoid the influence of the size of the excitation
zone in the X-ray point microanalysis, an adequate coefficient will be searched for, such as the ratio of the local
concentration of carbide-forming elements. In this way, based on a set of visual and chemical features of carbides
which result from the annealing time and temperature, it will be possible to develop maps for a specific state of the
alloy microstructure.

2. Material for Examinations

The material examined was the heat-resistant Ni-based alloy Haynes® 230®; its chemical composition is shown in
Table 1.

Table 1. Chemical composition of the examined alloy Haynes® 230® (weight %)

Ni Cr W Mo Fe Co Mn Si Al Ti C La B

Bal. 22 14 2 3 5 0.5 0.4 0.3 0.1 0.1 0.02 0.015

Microstructure evolution of Haynes® 230® was examined in an initial stage and after long-term exposure at
temperatures of 750 and 800 ◦C (Table 2).

https://doi.org/10.35995/jame60040009


J. Appl. Mater. Eng. 2020, 60(4), 109–119; 10.35995/jame60040009 111

Table 2. Annealing condition of the examined alloy, Haynes® 230®

No of Specimen State of Plastic Deformation Annealing Time Annealing Temperature

I Initial commercial state Initial commercial state Initial commercial state
II As initial 1000 h 750 ◦C
III As initial 2000 h 750 ◦C
IV As initial 3000 h 750 ◦C
V As initial 1000 h 800 ◦C
VI As initial 2000 h 800 ◦C

A steam experiment was carried out to evaluate microstructure changes in Haynes® 230® alloy. The research
was carried out in the steam oxidation rig shown in Figure 1 (Dudziak et al. 2017a, 2017b, 2018).

Figure 1. Atmospheric steam oxidation test facility used in the work

In this type of steam oxidation test set-up, 100% pure steam was generated by pumping deionized water from a
reservoir placed underneath the furnace. In the furnace, water steam was flown with a rate as low as 2.833 mL/min
and was returned back to the reservoir. The water used in the reservoir was deionized in order to reduce number of
ions dissolved in the water to a minimum. The whole system was sealed using stainless steel flanges equipped with
high temperature rubber at both ends. The whole system, prior to the experimental procedure, was purged for at
least 2 h using oxygen free nitrogen (OFN). This purge continued through the water reservoir throughout the sample

https://doi.org/10.35995/jame60040009


J. Appl. Mater. Eng. 2020, 60(4), 109–119; 10.35995/jame60040009 112

exposure period to minimize the level of oxygen in the system. Prior to the exposure, the furnace was calibrated
and set to the required temperature and the samples were placed in the “hot zone”. The calibration process ensured
placement of the samples in the furnace at a test temperature with an accuracy of ±5 ◦C. The samples were inserted
into the hot zone of the furnace using a calibrated stick at a measured distance in order to place the samples on the
Al2O3 plate within the hot zone. The samples of the Haynes® 230® alloy after every interval were cooled down to
room temperature naturally by switching of the mains.

Specimens for microstructure examinations were cut and mounted in the conducting resin. Microstructure
observations were carried out by means of scanning electron microscope FEI SCIOS on the metallographic
cross-sections, perpendicular to the exposed surface of plate, polished and chemically etched with metallographic
reagents Marble and Aqua regia. The observed microregions were situated along the central axis of the cross-section.

Estimation of the local chemical composition of the chosen microregions was carried out with the EDS X-ray
microanalyzer EDAX. Results analysis and ZAF correction was carried out using a commercial EDAX system
TEAM v.2.2.

3. Results and Discussion

3.1. Microstructure Characterization

Microstructure of the examined alloy, Haynes® 230®, was revealed on the microscope images consisting of grains of
solid solution γ(Ni)+γ’ and particles of the second phase, i.e., carbides (primary and secondary), which were inside
grains and in the form of the network on grain boundaries (Figures 2–7).

Figure 2. Specimen I. Microstructure of the examined alloy in the initial state and metallographic cross-section,
etched with Aqua Regia, SEM, SE: (a) microscopic mag., 1000×; (b) microscopic mag., 8000×; (c) microscopic
mag., 8000×

Figure 3. Specimen II. Microstructure of the examined alloy after annealing 1000 h/750 ◦C and metallographic
cross-section, etched with Aqua Regia, SEM, SE: (a) microscopic mag., 5000×; (b) microscopic mag., 10,000×;
(c) microscopic mag., 15,000×
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Figure 4. Specimen III. Microstructure of the examined alloy after annealing 2000 h/750 ◦C and metallographic
cross-section, etched with Aqua Regia, SEM, SE: (a) microscopic mag., 5000×; (b) microscopic mag., 10,000×;
(c) microscopic mag., 15,000×

Figure 5. Specimen IV. Microstructure of the examined alloy after annealing 3000 h/750 ◦C and metallographic
cross-section, etched with Aqua Regia, SEM, SE: (a) microscopic mag., 5000×; (b) microscopic mag., 10,000×;
(c) microscopic mag., 15,000×

Figure 6. Specimen V. Microstructure of the examined alloy after annealing 1000 h/800 ◦C and metallographic
cross-section, etched with Aqua Regia, SEM, SE: (a) microscopic mag., 2000×; (b) microscopic mag., 15,000×,
(c) microscopic mag., 25,000×

Figure 7. Specimen VI. Microstructure of the examined alloy after annealing 2000 h/800 ◦C and metallographic
cross-section, etched with Aqua Regia, SEM, SE: (a) microscopic mag., 1000×; (b) microscopic mag., 10,000×;
(c) microscopic mag., 15,000×
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Based on the microscopic observations shown in Figures 2–7, a morphological classification of the carbide
particles was carried out. Thus, seven morphological patterns were revealed, in classes predefined in a natural
language: compact/monophase, compact/two-phase (M), eutectic (E), filigree (F), dispersed particle in matrix
(DM), dispersed particles on grain boundary (DG), and plate (P) (Table 3).

Table 3. Morphological patterns of the second-phase particles, i.e., carbides, revealed in the examined specimens

Taxon of
Morphological Pattern

Typical Pattern
Recognized on the

Microstructure Image

Taxon of
Morphological Pattern

Typical Pattern
Recognized on the

Microstructure Image

1. Compact/
monophase

M

2. Compact/
two-phase

T

3. Eutectic
E

4. Filigree
F

5. Dispersed particles in
matrix

DM

6. Dispersed particles
on grain boundary

DG

7. Plate
P

Then, it was possible to analyze the course of the morphological evolution of carbide particles, which occurred
as a result of long-term annealing of the alloy in the form present in Table 4. One can see that some shapes of
carbide particles are specific for successive stage of annealing. Two-phase compact particles, filigree, and plates
only appear after annealing. Then, some of them disappear, as temperature and time of the treatment increase.

Results of the point X-ray microanalysis are presented in Table 5. The multicomponent carbides are typical for
Ni-based alloys; however, this means that estimating their true composition by EDS microanalysis is difficult and
the area of uncertainty can be large. The analyzed particles were not always convex and their sizes (1–10 µm) were
often smaller than the estimated volume of the detection zone. The analyzed carbides particles contained, as well
as the typical carbide-forming elements, Cr, W, Mo, Fe, Mn, and also Ni. At the same time, the carbide-forming
elements also remained dissolved in the γ-(Ni) solid solution. Therefore, a preliminary selection of the collected set
of results was used. Particles, where concentration of at least one of the carbide-forming elements was higher than
in the matrix (Table 1), were selected for further analysis.
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Table 4. Morphology of the carbide particles observed in the examined particles in Haynes® 230®

Morphological
Pattern

No. of Specimen

I II III IV V VI

E X X
M X X X X X X
T X X X X X
F X X X X

DM X X X X
DG X X X X X X
P X X X X

Table 5. Estimated concentration of carbide-forming elements in the chosen predefined particles of carbides

No. of
Specimen

Eutectic
Compact

Monophase M
Compact Two-Phase A Ta Compact Two-Phase B Tb

Cr Mo W Cr Mo W
Center TC Envelope TE Center TC Envelope TE

Cr Mo W Cr Mo W Cr Mo W Cr Mo W

I 66 2 22 16 4 57
II 17 3 56 18 3 60 10 3 57 18 3 55 24 1 16
III 66 2 24 16 3 58 8 5 60 16 2 53 26 1 14
IV 14 3 58 8 4 64 12 4 52 29 1 14
V 63 2 25 19 5 57 10 4 57 12 3 47 24 1 13
VI 9 3 57 63 2 23 16 2 60 12 5 41 17 2 40 41 1 16

The data presented in Table 5 show that carbides with specific morphologies are characterized by a diversified
and specific content of carbide-forming elements. However, in several groups of particles of similar morphology,
such as eutectics E and compact monophase particles M, significant differences in chemical composition were
revealed, probably affected by annealing at different temperatures. Thus, two kinds of eutectics were extracted: EP

(Cr > W), the primary eutectic in specimen I, and ES (Cr < W), the secondary eutectic in specimen VI. Two groups of
two-phase particles were also identified: Ta (Cr < W, in envelope) and Tb (Cr > W, in envelope).

Based on the morphology of carbide particles and their chemical compositions (Table 5), it can be assumed that
the compact monophase particles with a high content of W were primary MC carbides transformed in subsequent
annealing stages into M6C and M23C6 carbide particles, which is in line with the findings previously published
by other scientists (Wang 2004; Yang et al. 2013; Dong et al. 2012; Lvov et al. 2004; Yin et al. 2007). The chemical
compositions of the eutectic particles indicate that they formed through solidification of the residual liquid alloy
(high Cr content) or melting and subsequent reaction between the carbides at the grain boundaries (high W content).

The morphology of two-phase particles T is characteristic for intermediate stage of the peritectic transformation
preceded with reaction at interface of the primary carbide/matrix. They appeared after annealing at both
temperatures, 750 and 800 ◦C. A series of peritectic and peritectoidal transformations, occurring between carbides
and the alloy matrix in Ni-based alloys, are reported in the literature (Lvov et al. 2004; Sun et al. 2016). In both groups
of two-phase particles, A and B, the primary phase in the center of particle can be assigned to nonstoichiometric
MC1−x carbide (Wu et al. 2008; Yang et al. 2013). The results of estimation of the concentration of carbide-forming
elements revealed trends of their mutual replacement between primary and peritectic phases. Then, in group A, in
the secondary phase (envelope), atoms of Cr were substituted with Mo atoms and W atoms, while in group B, W
and Mo atoms were substituted with Cr atoms. Therefore, in group A, the peritectic phase was formed by M6C
type carbide, while in group B, the carbide M23C6 started to precipitate at the interface of the matrix. The presence
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of two-phase particles at all tested annealing stages may indicate that some phase transformations were incomplete,
and therefore the alloy still did not reach the equilibrium state.

According to (Yang et al. 2013; Dong et al. 2012; Lvov et al. 2004), during the cooling of the alloy, the primary
MC carbide becomes thermodynamically unstable below 1100 ◦C. It is replaced successively with M6C carbide
in the temperature range 800–1100 ◦C. Then, the M23C6 carbide starts to form and becomes stable below 800 ◦C.
Thus, the observed process of formation of M6C and M23C6 carbides at the expense of primary MC carbide particles
indicates that during annealing of the alloy in the temperature range 750–800 ◦C, the phase composition of the
microstructure tends to reach an equilibrium state.

The chemical compositions of the more dispersed particles, such as filigree (F), plates (Ps), and dispersed
particles inside grains (DG) and decorating boundaries (DBs), were only estimated based on value of coefficient
defined as concentration ratio Cr/W. The carbides forming these dispersed morphological patterns were ascribed
based on the EBSD analysis of the M23C6 carbides group. The decrease in the value of the Cr/W coefficient,
observed in the examined specimens (Figure 8), reflects the process of the replacement of Cr atoms with Ni atoms,
reported in M23C6 carbides annealed at 750 ◦C (Dong et al. 2012). This process was developed for the group of
dispersive carbides, in morphological patterns F, P, DG, and DB, as the annealing time was extended.

Figure 8. Concentration ratio Cr/W for predefined morphological patterns of carbides in specimens annealed at
750 ◦C

As shown in Figures 2–8 and in Tables 3 and 5, in the examined specimens at least three different classes of
carbide particles were recognized:

- particles of similar morphology and different chemical composition: E and M;
- particles of different morphology and similar chemical composition: T, F, P;
- particles of similar morphology and similar chemical composition: DG and DB.

This means that at least two different markers, morphological and chemical, are necessary to describe the
microstructure image and its evolution as a result of the annealing parameters.

Usually, particle shape was described based on microscope image analysis and measured geometrical
parameters using quantitative metallography rules (Romanowska-Pawliczek et al. 2011; Komenda 2001). However,
very often fuzzy logic should be applied because of complication of the morphological patterns observed on
microstructure images. Recently developed methods for image recognition and classification based on machine
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learning allow the stage of parameterization of visual characteristics to be avoided. A set of morphological patterns
identified for each image can be described in the natural language and used for microstructure feature extraction by
CNN procedures (Ma et al. 2020; Azimi et al. 2018; Chun et al. 2020).

The results obtained in this work can be used to characterize the microstructure image of the examined alloy
with different morphological patterns of carbide particles defined in the natural language and chosen markers of
their chemical compositions. Then, a microstructure map can be created to support the procedures of predicting
and controlling the local damage mechanism of material and its local corrosion resistance.

Figure 9 shows an example of such a microstructure map developed on the basis of Tables 3 and 5. It represents
the location of the morphological patterns of E and T carbides in coordinates expressing their chemical compositions.
The Wc/WM and Crc/CrM ratios were used as map co-ordinates (where indexes c and M are concentration in the
carbide and matrix, respectively). It can be seen that, although the morphological parameters will be insufficient
to recognize the two classes of eutectics, the proposed chemical compositions of additional markers will make
their discrimination possible. Chemical composition of the two-phase carbide particles, especially their central
area, is characteristic by similar contents of Cr and W; thus, their possible discrimination should be based on
the fuzzy logic concept. Therefore, taking into account the actual chemical composition of carbide particles, it is
necessary to test other chemical markers (e.g., the proportion of concentrations of other elements) that would allow
for more effective differentiation of similar morphological patterns. Nevertheless, the results of this stage of the
research show usefulness of the complementary parameters, morphological and chemical, to characterize evolution
of carbide particles in the Ni-based alloy Haynes® 230®.

Figure 9. Microstructure map, presenting morphological patterns related to chemical composition coefficients
Wc/WM and Crc/CrM of carbide particles of eutectic E and two-phase Ta and Tb groups

4. Conclusions

At this stage of the research, the following conclusions have been formulated:
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1. Morphological patterns observed in the microscope images can be ascribed to carbide particles present in the
Haynes® 230® alloy at successive stages of microstructure formation during annealing. The map created on
the basis of the complementary markers, morphological and chemical, reflects the course of morphological
evolution of the alloy microstructure.

2. Morphological patterns assigned to particles of specific carbides identified in the alloy microstructure were
characteristic of the sequence of phase reactions taking place successively at the stage of solidification, cooling
and, finally, annealing at the temperatures of 750 and 800 ◦C. In this way, these morphological taxa predefined
from the microstructure image can be used by artificial intelligence-based procedures such as machine learning
to control the microstructural effects generated in the Haynes® 230® nickel alloy during prolonged exposure
to a high temperature.

3. It was found that during the subsequent annealing stages, atoms of carbide-forming elements such as W, Mo,
Cr were exchanged between the carbide particles and the matrix. The values of the relative concentrations
of W, Cr and Mo were estimated on the basis of the Cr/W, Crc/CrM, Wc/WM ratios specific for each
recognized morphological pattern. The phenomenon of an exchange of atoms of carbide-forming elements
generates microareas of chemical heterogeneity in the matrix, which may affect the course of the solid solution
strengthening process and the extent of surface corrosion.
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Dudziak, T., L. Boroń, V. Deodeshmukh, J. Sobczak, N. Sobczak, M. Witkowska, W. Ratuszek, and K. Chruściel.
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